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A B S T R A C T

Cybersecurity relies on Indicators of Compromise (IoCs) to detect and address threats. Although Threat
Intelligence Platforms (TIPs) and Open Source Intelligence (OSINT) are common sources for gathering IoCs,
their reliability varies. In our study, we enhance the management of IoCs and OSINT by introducing a
novel method that reliably assesses IoC’s threat severity and confidence scores, focusing on Structured Threat
Information eXpression (STIX) for threat associations. Our approach, implemented on OpenCTI, significantly
enhances IoC value, as it aggregates threat intelligence from diverse sources utilizing a STIX graph-based
approach, which is a unique feature among TIPs. Additionally, our method employs heuristic analysis to
optimize IoC scoring. It takes into account factors such as relevance, completeness, timeliness, accuracy, and
consistency while emphasizing the confidence of the source. Notably, the proposed method has enhanced the
precision of the confidence score, achieving a 25.18% reduction in the average difference of confidence scores
compared to the benchmarked platform. The Emotet and Medusa case studies underscore the importance of
source credibility in confidence scores, emphasizing our TIP’s precision in cybersecurity threat assessment and
defense enhancement.
1. Introduction

In recent years, the shift to remote work and a virtualized IT en-
vironment, accelerated by COVID-19, has resulted in security breaches
and increased vulnerability to cyberattacks in various locations (Mahy-
oub et al., 2023). The global cost of cybercrime has surged to $8.44 tril-
lion as of 2022 and is projected to reach $23.84 trillion by 2027 (Fleck,
2022). This escalating threat landscape has led to the expansion of
the global cyber threat intelligence market. Enterprises are increasingly
relying on Cyber Threat Intelligence (CTI) to stay informed about the
latest attack trends, enabling them to adapt to evolving threats (Statista,
2023).

CTI encompasses detailed information regarding cyber threats that
organizations may encounter (Bandara et al., 2022). It is compiled
from a diverse array of sources, including but not limited to Open
Source Intelligence (OSINT), internal data, proprietary services, and
Information Sharing and Analysis Centers (ISACs). Threat Intelligence
Platforms (TIPs) play a crucial role in the aggregation, analysis, and
presentation of this information, facilitating the identification of Indi-
cators of Compromise (IoCs) (Azevedo et al., 2019). OSINT involves
collecting and processing data from open sources (Hwang et al., 2022),
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offering advantages such as exploiting available information, low col-
lection costs, and easy data access. However, the credibility of OSINT
is questionable, as it can be posted on online resources by anyone or
a specific organization. TIPs address this by purchasing commercial
intelligence or exploring the dark web for the latest threat intelli-
gence (Connolly et al., 2023). Nevertheless, many TIPs provide threat
intelligence that has not been processed or lacks a standardized method
for calculating threat indicators, limiting the generation of valuable
quality data (Enisa, 2021).

Sharing OSINT is also challenging, as TIPs must use specific stan-
dards to expedite the processing and analysis phases of information
receipt (Khan and Wallom, 2022). Additionally, a proper quality as-
sessment is necessary to verify the value of collected data for threat
intelligence, presenting a significant challenge (Sillaber et al., 2016).
Improving the quality of information obtained is crucial, considering
the difficulty information security analysts face in sifting through vast
amounts of data to find relevant information. Fortunately, the issue of
TIP exchange has been addressed with the emergence of Structured
Threat Information eXpression (STIX) (OASIS, 2023) and Malware
Information Sharing Platform & Threat Sharing (MISP) (Wagner et al.,
2016). STIX, a language and serialization format established by OASIS
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for exchanging CTI, resolves the problem by classifying each piece
of information as a specific object or attribute in its latest version,
STIX 2.1. Multiple objects are linked through relationships, enabling
quick and complex expression of CTI, including doubts, compromises,
and attributions. STIX visually presents all aspects to analysts or other
TIPs. While MISP also facilitates threat intelligence exchange, its design
primarily supports its specific ecosystem. Given STIX’s broader applica-
bility and software-agnostic nature, our focus remains on STIX for its
wider utility in threat intelligence exchange.

Given the unclear calculation methods employed by current intel-
ligence platforms in determining IoC threat scores and the varying
quality of data sources, there is a significant risk of receiving inaccurate
or outdated information. This paper addresses this issue by presenting
a method to enhance the IoC quality through a knowledge graph and
by establishing a threat score standard. The proposed method enriches
intelligence by associating and merging different OSINT sources for
a single IoC, following the 18 STIX Domain Objects (SDOs) (OASIS,
2023) dictated by the STIX Heuristic evaluation method. Our study,
based on the four dimensions of completeness, accuracy, relevance,
and timeliness (Sergio, 2015) and the additional dimension of con-
sistency, allows for an objective evaluation of the IoC threat scores
and credibility, thereby improving the quality of threat intelligence.
Furthermore, we integrate our method into OpenCTI (Filigran, 2024),
an OSINT platform. Our integrated approach enables OpenCTI to collect
OSINT and enrich IoC with a docker connector. We evaluated our
approach using 232,370 pieces of intelligence, facilitating the creation
of enriched IoC and the generation of STIX bundles to identify and
calculate scores.

The main contributions as follows:

• We developed a method to improve IoC value using CTI, signifi-
cantly boosting threat data quality. This enhancement is achieved
by integrating a multidimensional analysis framework that in-
corporates not only the volume and variety of data sources but
also the contextual depth and temporal relevance of the infor-
mation, thereby delivering a more nuanced and comprehensive
understanding of cyber threats.

• We introduced the first IoC-specific severity and confidence scor-
ing system, marking a 25.18% average confidence score variation
from other platforms.

• We validated our approach within OpenCTI through Emotet and
Medusa case studies, proving its effectiveness in creating detailed,
actionable IoCs.

2. Background

2.1. Cyber threat intelligence

CTI helps organizations quickly detect and respond to potential
cybersecurity threats, offering insights into vulnerabilities, attack meth-
ods, malware, threat behaviors, and indicators. This information is
valuable for individuals and organizations, aiding in strengthening
cybersecurity defenses and responding to threats. The different levels at
which CTI operates include tactical, operational, and strategic. Tactical
intelligence provides the technical details necessary for defenses against
imminent threats, operational intelligence informs the broader context
around threat actors and campaigns, and strategic intelligence guides
long-term security policies and risk analysis. However, the effective-
ness of CTI hinges on four essential qualities: completeness, accuracy,
relevance, and timeliness. Completeness ensures CTI covers sufficient
threat data to be effectively actionable across potential victims. Accu-
racy is vital, as the benefits derived from correct threat intelligence
must outweigh the costs associated with errors. Relevance ensures the
intelligence is directly applicable to the organization’s specific threat
landscape, allowing for effective countermeasures. Lastly, timeliness
dictates that intelligence must be operationalized promptly to outweigh
the costs of threat intelligence and mitigate threats efficiently.
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However, the quality of threat intelligence varies as different
sources contribute to CTI, each with distinct collection, analysis, and
sharing methods, resulting in differences in intelligence quality and
credibility. Another common issue is the inconsistency in the reliability
of sources. Intelligence providers differ in expertise, resources, and
technical capabilities, affecting the accuracy and reliability of the
intelligence they offer. Accuracy is crucial as intelligence involves vast
amounts of information, some of which may need correction, updating,
or may be incomplete, impacting the reliability of threat assessment.

To address the above-mentioned issues, the evaluation of the value
of threat intelligence is vital. The evaluation involves questions such
as the ability to identify attacks, reduction in false alarms, relevance
to specific targets, and the time between creating threat events or
indicators and recording defensive responses. Establishing a credibility
assessment mechanism for different intelligence providers is essential
for ensuring reliability. Consistent analysis methods and evaluation
standards contribute to the uniformity and comparability of intelli-
gence. Promoting information sharing and collaboration mechanisms
facilitates inter-organizational intelligence sharing and timely access to
the latest information.

2.2. Indicators of compromise

Indicators of Compromise (IoCs) are crucial for sharing and utilizing
threat intelligence, helping identify signs of system or network threats.
Specific indicators like IP addresses, domain names, file hash values,
and file metadata play a vital role in this process.

• IP addresses: These are often associated with malicious activities,
and unusual IP connections may indicate an ongoing or attempted
breach.

• Domain names: Cyber-attackers commonly use domain names for
phishing, malware distribution, or command and control (C2)
communication.

• URLs: Similar to domain names, malicious URLs are frequently
employed in phishing attacks or for delivering malware.

• File hash: The hash values of malicious files, such as malware or
other harmful payloads, are often shared as IoCs. Comparing file
hashes helps organizations identify known threats.

IoCs allow the detection of threat behaviors by analyzing and
comparing various types of data, allowing for tracking and identifying
attacker activities. These IoCs bolster the security of the entire ecosys-
tem and enhance individual defensive capabilities when they are shared
among organizations and security communities. Sharing IoCs enables
organizations to quickly gain insights into emerging threats and attacks,
supporting the development and implementation of proactive security
measures to reduce potential damage and risks.

2.3. Threat intelligence platform

One way to share IoCs is through a Threat Intelligence Platform
(TIP). A TIP acts as a central hub where organizations and security com-
munities can exchange, share, and store information about IoCs. These
platforms offer a secure and standardized environment for effective
sharing and obtaining of the latest threat information. Organizations
can upload their IoCs to the TIP to share them with other organizations.
Simultaneously, they can also check IoCs provided by other users on
the platform to learn about new threats and attacks. This sharing
and exchange mechanism helps organizations quickly adapt to the
ever-changing threat landscape.

TIPs also come with features and tools to support IoCs management
and analysis. These include indexing and searching for threat intelli-
gence, adhering to information exchange standards, and providing vi-
sualization and reporting capabilities. These features help organizations
better organize, analyze, and apply the IoCs information they receive,
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Table 1
Comparative analysis of CTI quality evaluation across different studies.

Studies Input Output Objective Method IoC Standard

Identification &
correlation

Trust
establishment

Complete-
ness

Accuracy Relevance Timeliness Consistency

Sillaber et al.
(2016)

CTI Relevance
score

✓ Regression &
Word embedding

✓

Schlette et al.
(2021)

CTI Quality score ✓ Data quality ✓ ✓

Zhang et al.
(2022)

CTI Quality
assessment

✓ MITRE ATT&CK
correlation

✓

Schaberreiter
et al. (2019)

CTI CTI Source
priority

✓ Quantitative
params

✓ ✓ ✓

Ours IoC Severity &
Confidence
score

✓ ✓ Heuristic
evaluation

✓ ✓ ✓ ✓ ✓
Table 2
Comparative analysis of CTI quality improvement approaches across different studies.

Studies Input Output Objective Method IoC standard

Accelerated
response

Enrichment Completeness Accuracy Relevance Timeliness Consistency

Meier et al.
(2018)

CTI Rank ✓ Page rank ✓ ✓ ✓

Azevedo
et al. (2019)

CTI Classification ✓ Clustering ✓ ✓ ✓ ✓

Gao et al.
(2020)

CTI Classification ✓ GCN ✓

Gonzalez-
Granadillo
et al. (2021)

CTI CTI report ✓ Heuristic
analysis

✓ ✓ ✓

Ours CTI STIX graph ✓ ✓ Heuristic
scoring

✓ ✓ ✓ ✓ ✓
enhancing their cybersecurity capabilities and efficiency. Examples of
such platforms include MISP, which is widely used to share, store, and
correlate Indicators of Compromise of targeted attacks. OpenCTI is an
open-source platform that allows organizations to manage their knowl-
edge and observables about cyber threat intelligence (Filigran, 2024).
These platforms exemplify the diverse ecosystem of TIPs available to
organizations looking to improve their cybersecurity postures through
collaborative intelligence sharing.

However, some challenges must be addressed to share IoCs on
TIPs successfully. Ensuring the quality and credibility of shared IoC
information is one such challenge. OpenCTI, the open-source TIP used
in our experimental environment, offers fields for rating the author’s
reliability and the confidence level of each CTI object to assist with
this challenge (OpenCTI, 2024). Despite the availability of these fea-
tures, our research sought to explore beyond the platform’s default
mechanisms. We aimed to develop and validate a novel set of criteria
and mechanisms for the quality assessment of IoCs, complementing
and potentially enhancing the existing capabilities of OpenCTI. Thus,
while acknowledging the value of OpenCTI’s built-in assessments, our
study deliberately did not utilize these fields; instead, it focused on
our independent methodological contribution to the field of CTI quality
assessment.

3. Related work

In recent years, there has been a significant push to share informa-
tion about threats, network attacks, and incidents among organizations.
OSINT serves as the primary source for this shared data, enabling
even small organizations to detect complex attacks without extensive,
in-depth investigations. TIPs like MISP (Wagner et al., 2016) and
3

OpenCTI play a key role in collecting, storing, and spreading these
data. These platforms use protocols such as STIX (Bandara et al., 2022),
TAXII (Connolly et al., 2014), and OpenIoC (Obrst et al., 2012) to
enable intelligence sharing between platforms. Despite these improve-
ments, challenges related to outdated or incomplete threat intelligence
still persist.

3.1. Evaluating threat intelligence

The recent literature focuses on providing high-quality threat intel-
ligence by addressing these challenges. The literature reveals a dual
approach: one aspect focuses on the evaluation of threats, while the
other aims to enhance the quality of intelligence. For example, Serrano
et al. stress the importance of measurable quality control in TIPs (Ser-
rano et al., 2014). Although they propose a solution, it faces practical
implementation difficulties. Schlette et al. suggest a Data Quality (DQ)
method to measure and visually represent the quality of threat intelli-
gence (Schlette et al., 2021). However, this method requires expertise
since it heavily relies on specific data sources.

Table 1 offers a detailed comparative analysis of various research
efforts aimed at assessing the quality of CTI. These studies underline
the essential task of scrutinizing network threat intelligence to ad-
dress its intrinsic challenges effectively. Unlike prior methodologies
that might focus on a subset of quality factors, such as complete-
ness, accuracy, relevance, and timeliness. Our approach stands out
by equally weighing all these elements, including consistency. This
equal consideration ensures a comprehensive evaluation framework
that improves upon previous methodologies by providing a nuanced
and balanced assessment of CTI quality. Our research contributes to
the domain by advocating for a data-driven, dynamically adjustable
evaluation strategy that equally values each quality factor. This ap-
proach facilitates the development of more accurate and reliable threat

intelligence evaluation metrics.
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Table 3
Notations.

Category Symbol Description

Severity score

𝑆𝑆 Overall of severity score
𝑆𝑆𝐴 Accuracy
𝑆𝑆𝑅 Relevance
𝑆𝑆𝑇 Timeliness
𝑆𝑆𝐶𝑃 Completeness
𝑆𝑆𝐶𝑆 Consistency

Confidence score
𝐶𝑆 Overall of confidence score
𝐶𝑆𝑆𝑅 Source rank
𝐶𝑆𝑆𝐶 Similarity score

3.2. Enhancing threat intelligence quality

In another study, Zhang et al. introduce a technique for autonom-
ously evaluating sparse threat intelligence nuances (Zhang et al., 2022).
They combine this with ATT&CK to identify attack techniques related
to IoCs. Schaberreiter et al. expand on this with a parameter-based tech-
nique assessing the credibility and overall quality of threat intelligence
from the network (Schaberreiter et al., 2019). Their methodology con-
siders aspects like data timeliness, completeness, and reliability, incor-
porating the SVM machine learning algorithm to discern the confidence
score of threat intelligence sources.

In enhancing intelligence credibility, Meier et al. propose FeedRank,
a unique ranking system for threat intelligence sources (Meier et al.,
2018). This method determines correlations in time and space without
relying on baseline facts or operator input. Additionally, a system based
on OSINT has been developed to enrich threat intelligence by corre-
lating and amalgamating intelligence through two distinct measures
of similarity. Gao et al. integrate various nodes in the infrastructure
and their interrelationships using heterogeneous information networks
(HinCTI), refining the modeling and analysis of threat intelligence (Gao
et al., 2020). Azevedo et al. emphasize the importance of OSINT in im-
proving the security of an organization’s network, suggesting a method
that uses similarity metrics and associated techniques to consolidate
and correlate IoCs (Azevedo et al., 2019). The effectiveness of their
method is further validated through experimental evaluations.

In Table 2, we investigate the methodologies used to improve the
quality of CTI. This analysis explores various strategies researchers
employ to refine the efficacy and reliability of threat intelligence. Each
study introduces unique methods for increasing intelligence quality,
often focusing on one or two key aspects, such as enrichment or accel-
erated response mechanisms. Our method, as depicted in our research,
uniquely encompasses a holistic view by considering these factors and
enhancing the accuracy of an IoC’s severity score alongside confidence
assessments. Our work includes integrating this comprehensive evalu-
ation and enhancement system with the OpenCTI platform, aiming for
practical application and validation.

4. Problem statement

We collect multiple IoCs from various sources to improve their
quality and provide an evaluation of this quality, along with the cal-
culation of severity and confidence scores for these IoCs. The problem
is stated as given multiple IoCs, we aim to effectively map them into
an undirected graph and enhance the accuracy and relevance of threat
intelligence score calculations of these IoCs, thus improving the quality
of the IoCs. However, our efforts to enhance accuracy and relevance
are constrained by the requirements of data integrity and consistency.
We divide the problem into three sub-problems. In Table 3, we list the
notations used in this paper along with their descriptions. For Severity
Score, we consider five factors: Accuracy (𝑆𝑆𝐴), Relevance (𝑆𝑆𝑅),

𝑇 𝐶𝑃 𝐶𝑆
4

imeliness (𝑆𝑆 ), Completeness (𝑆𝑆 ), and Consistency (𝑆𝑆 ). For m
onfidence Score, we consider Source Rank (𝐶𝑆𝑆𝑅) and Similarity
Score (𝐶𝑆𝑆𝐶 ).

Data Collection, Extraction, and Normalization
We collect and process IoCs from various OSINT sources to en-

sure the accuracy and alignment of the processed data with the STIX
standard.

• Inputs: IoCs from OSINT sources.
• Outputs: STIX objects, ensuring precise mapping and standard-

ization of IoC attributes.
• Objective: Maximize the accuracy of data extraction and normal-

ization.
• Constraints: Ensure data integrity and consistency during extrac-

tion and normalization.

Enrichment and Integration
In sub-problem 2, we aim to enhance the initial data, incorpo-

rating user-side IoC and ensuring a high correlation between threat
intelligence components.

• Inputs: IoCs and STIX objects.
• Outputs: STIX graph including heuristic components.
• Objective: Enhance the correlation and clustering potential of

IoC reports.
• Constraints: Ensure data relevance and prevent redundancy in

the enrichment phase.

Heuristic Severity Score Agent
Our objective in sub-problem 3 is to assign a standardized severity

score to each threat, providing stakeholders with a clear and consistent
metric to gauge potential threats.

• Inputs: STIX graph.
• Outputs: Severity Score and Confidence Score.
• Objective: Standardize and optimize the quality of the severity

score using 𝑆𝑆𝐴, 𝑆𝑆𝑅, 𝑆𝑆𝑇 , 𝑆𝑆𝐶𝑃 , and 𝑆𝑆𝐶𝑆 .
• Constraints: Prevent overfitting or undervaluing any particular

metric and ensure uniformity in score calculation.

. Solution approach

To enhance the quality of IoCs, we need to collect them through
SINT. We use collected IoCs as primary input data and pass them

hrough a system, as shown in Fig. 1, where they undergo multiple
hases of collection, analysis, and enrichment. This iterative process
ims to enhance the IoC quality, along with the provision of sever-
ty and confidence scores, while uncovering hidden relationships and
otential attack paths, especially those concealed within intricate re-
ational networks. Here we explain the details of the proposed system
rchitecture.

.1. System architecture

The main goal of the proposed system is to calculate the severity and
onfidence score of IoC. Fig. 1 illustrates the overall system architec-
ure, which can be divided into five stages: (1) Data collection, where
he challenge of extensive data collection from various OSINT sources
s addressed through OpenCTI connectors, laying the foundation for a
omprehensive threat intelligence database; (2) Normalization, ensur-
ng a uniform data format for efficient storage and structuring within
he OpenCTI graph database, facilitating intricate relationship mapping
etween cyber entities; (3) Enrichment, where selected IoCs are re-
ined for depth and quality using enrichment connectors, coupled with
eduplication and relationship building to weed out redundancies and
lucidate the cyber threat landscape; (4) Heuristic scoring, applying a

ultifaceted scoring system that evaluates IOCs against key indicators:
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Fig. 1. System architecture.
timeliness, accuracy, completeness, relevance and consistency, provid-
ing a nuanced assessment of threat intelligence; and (5) Visualization,
the culmination stage that presents the analyzed and scored IoCs in
an intuitive visual format, enabling stakeholders to easily understand
complex threat relationships and make informed decisions. This section
offers an overview of the platform’s methodology and the distinctive
contributions of each stage of the system architecture, highlighting the
integrated approach to enhancing cybersecurity threat assessment.

5.1.1. Data collection
This stage addresses the challenge of collecting and extracting threat

intelligence data from various OSINT sources. This stage has a data
collection module to collect threat intelligence from multiple cyber
threat intelligence providers and categorize them according to func-
tion. To promote efficiency and ease of data handling, this module is
deployed using Docker and collects data using the following connectors
developed by OpenCTI:

• External Import Connectors play a pivotal role in acquiring ex-
ternal intelligence information, which is instrumental for the
comprehensive assessment of cybersecurity threats. These connec-
tors coordinate with APIs of other platforms, utilize web crawlers,
and employ the Pycti tool developed by OpenCTI to gather a
broad spectrum of threat intelligence. Table 4 lists the external
connectors, specialized IoC types, and corresponding versions.
These settings demonstrate our system’s capability to integrate
and analyze various forms of threat data, thereby enhancing the
overall effectiveness of our threat intelligence platform. Citations
corresponding to the sources of IoCs include IPs (AbuseIPDB,
2024), domains, URLs (AlienVault, 2024; VXVault, 2024), file
hashes (Abuse.ch, 2024), and CVEs (MITRE, 1999; CISA.gov,
2019).

• Internal Enrichment Connectors are employed to enhance the
specificity and reliability of IoC data. These connectors play dis-
tinct roles: (1) AbuseIPDB assesses the reputation of IP addresses;
(2) VirusTotal conducts comprehensive malware analysis by ag-
gregating data from multiple antivirus engines and databases.
Table 5 shows connectors and their functionalities (AbuseIPDB,
2024; VirusTotal, 2024).

5.1.2. Normalization
After collection, the data undergo normalization, via the normal-

ization module, to ensure uniform storage in the OpenCTI database.
OpenCTI’s graph database storage model, using nodes and edges, is
leveraged for its capability to structure, enrich, and represent intricate
relationships between cyber entities. The severity scores computed at
this phase replace the platform’s severity score.
5

5.1.3. Enrichment
The enrichment stage is composed of three modules: (1) IoC En-

richer, (2) Deduplicator, and (3) Relationship Builder.

• IoC Enricher: Due to the vast number of IoCs available, it is
impractical to enrich every single IoC. Therefore, our system em-
ploys a focused approach, enhancing IoCs actively searched for or
queried within the system. Data retrieval processes facilitate this
prioritization via APIs, which fetch JSON-formatted data specific
to the IoCs under investigation. The enrichment process then
utilizes the returned results to augment the IoCs’ information,
emphasizing the determination of an IoC’s maliciousness or the
results from antivirus software recognition. These selected IoCs
are enriched through connectors, as illustrated in Table 5.

• Deduplicator: To address potential duplication in intelligence
collected by OpenCTI, we have referred to the preprocessing
steps before handling similarity models (Li et al., 2024), and
then instituted the following deduplication steps: (A) Stopword
removal, (B) Lemmatization, (C) Weight calculation using Term
Frequency–Inverse Document Frequency (TF–IDF), (D) Assess-
ment of data similarity with Cosine Similarity, chosen for its
effectiveness in identifying conceptual similarities in content post-
preprocessing and its computational efficiency for large-scale
datasets. In reviewing the deduplication process for our dataset, a
random sample of approximately 9000 records was analyzed, as
illustrated in Fig. 2. We have established a similarity threshold
of 0.9. This high threshold is chosen to reflect the nature of
CTIs that often exhibit only slight variations, such as changes
in IP addresses, particularly for those generated from honeypots.
The graph indicates a marked increase in the number of similar
document pairs identified as duplicates when the threshold is
below 0.9, justifying our selection of this threshold to ensure
that nearly identical documents are targeted while preserving the
granularity of our intelligence data.

• Relationship Builder: Our system employs an automated rule set
to parse and process threat intelligence. One such rule is the
‘‘Attribution via Attribution’’ rule which can be understood with
an example i.e., If Entity A is attributed to Entity B, and Entity B
is attributed to Entity C, then a derived association is established,
resulting in Entity A being attributed to Entity C. When these rules
are met, the designated actions are automatically triggered, or
pertinent events are initiated.

5.1.4. Heuristic scoring
A holistic evaluation of threat intelligence necessitates a compre-

hensive scoring mechanism. The Heuristic Scoring methodology offers
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Table 4
External import connectors and corresponding IoC types.

Connector IoC type (s) OpenCTI version

Alienvault IPs, Domains, URLs, File Hashes 5.3.17
Common vulnerabilities and exposures CVEs 5.3.17
CISA known exploited vulnerabilities CVEs 5.3.17
AbuseIPDB IP blacklist IPs 5.3.17
Abuse.ch SSL blacklist SSL certificate identifiers 5.3.17
MITRE datasets Attack techniques, Tactics 5.3.17
MalwareBazaar recent additions Malware hashes 5.3.17
VX vault URL list URLs 5.3.17
Table 5
Internal enrichment connectors and their functions.

Connector Functionality Version

AbuseIPDB IP address reputation check 5.3.17
VirusTotal Multisource malware analysis 5.3.17

Fig. 2. Similarity comparison of CTI tested by dedupicator.

a well-structured assessment system, utilizing five key indicators: Time-
liness, Accuracy, Completeness, Relevance, and Consistency. These in-
dicators cover various aspects of threat intelligence and are vital in
understanding their significance in the realm of cybersecurity. Table 7
provides a systematic breakdown of the scoring for each key indica-
tor. By establishing distinct criteria for each score and indicator, this
approach offers a multidimensional perspective on the assessment of
threat intelligence. Such a scoring system is crucial for ensuring a
nuanced and well-informed evaluation. In Section 5.2, we delve into
a detailed explanation of this methodology.

5.1.5. Visualization
Visualization is the last stage of our proposed system, designed to

provide a detailed visualization of IoCs and their interrelationships and
assess their severity. This component makes complex relationships, and
varying degrees of threat severity articulated in a structured format for
easy comprehension.

5.2. Severity and confidence score calculation

Following are the steps involved in the calculation of severity and
confidence scores of IoCs.

Step 1: Establishing standard scoring criteria. The first step is to have
a well-defined scoring mechanism. This is depicted in Table 7, where
each of the five indicators has a specific scoring system based on
predefined criteria.
6

Fig. 3. Architecture of the BERT-CRF model used for relevance standard.

Step 2: In-depth indicator analysis. Each of the five indicators is elab-
orated. For Timeliness, the difference between the ‘‘first seen’’ and
‘‘last seen’’ of each STIX object is analyzed. As mentioned above, this
aspect helps various cybersecurity roles differently, emphasizing the
need for a personalized approach. Accuracy is measured by considering
the diversity of external references. The multitude of sources leads to
a more comprehensive and reliable threat analysis. For Completeness,
the STIX 2.1 standard is the primary metric to ensure that the entire tra-
jectory of an IoC is covered, offering a comprehensive view. Relevance
of threat intelligence is efficiently evaluated using the advanced BERT-
CRF model (Chen et al., 2023), which identifies 11 crucial entities such
as hacker organizations, offensive actions, sample files, security teams,
tools, time and purpose of attack, geographic area, industry, and vul-
nerabilities. Previous research shows that we use BERT-CRF to achieve
good results in threat entities, so we continue to use the previously
used model as shown in Fig. 3. BERT (Bidirectional Encoder Represen-
tations from Transformers) employs self-supervised learning to generate
deep word embeddings from a vast corpus of English text (Vaswani
et al., 2017), enhancing word sense disambiguation. It utilizes Masked
Language Modeling (MLM) and Next Sentence Prediction (NSP) for pre-
training: MLM masks 15% of words in each sentence to predict them
based on context, while NSP evaluates the continuity of the sentence se-
quence. This allows BERT to integrate contextual information from both
preceding and following text, improving linguistic accuracy. We used
the BERT-base-uncased variant, incorporating 12 transformer blocks
and 768 hidden layers with 12 attention heads, totaling 110 million
parameters. BERT alone does not suffice for sequence classification;
thus, we integrate a Conditional Random Field (CRF) layer post-BERT
to model global dependencies and sequence dynamics. The CRF layer
learns to maximize the joint probability of label sequences given the
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BERT-derived feature vectors 𝐻 . The CRF function is formalized in
Eq. (1). as

𝑝(𝑌 ∣ 𝐻) = 1
𝑍(𝐻)

exp

( 𝑛
∑

𝑖=1

𝑘
∑

𝑗=1
𝜆𝑗𝑓𝑗

(

𝑦𝑖, 𝑦𝑖−1,𝐻, 𝑖
)

)

, (1)

here 𝑍(𝐻) normalizes the probabilities to ensure they sum to one, 𝜆𝑗
re feature weights, and 𝑓𝑗 are feature functions capturing the patterns
n the sequence. This combination ensures precise entity tagging by
electing the label sequence 𝑌 that maximizes the probability 𝑝(𝑌 |𝐻).

To ensure a nuanced and precise evaluation of each piece’s rel-
vance to specific security contexts, the scoring method adopts an
veraging approach across these entities, with scores ranging from 0
o 5. This comprehensive strategy guarantees a detailed assessment
ailored to the unique demands of diverse security scenarios. Finally,
onsistency is measured through interactions with external antivirus
oftware interfaces, where their evaluations serve as third-party vali-
ations. It is An adaptive, average-based scoring method that accounts
or variability in antivirus support and addresses the diversity in IoC
ypes. The importance of these key indicators is explained as follows:

• Timeliness: Threats are evolving rapidly, and knowing a threat at
an early stage helps prioritize and deploy resources efficiently. It
is the difference between being proactive and reactive in many
scenarios.

• Accuracy: A false positive can be as harmful as a missed threat.
Hence, verifying threat intelligence against multiple sources en-
sures higher reliability.

• Completeness: A holistic view of threats is more actionable. With
the STIX standard, one can fully understand the threat landscape.

• Relevance: The flood of cyber threats makes distinguishing the
crucial from the trivial a paramount task. To maximize the impact
of cybersecurity efforts by focusing on threats directly relevant to
the organization’s specific context.

• Consistency: The reliability of threat intelligence hinges on its
consistency, especially given the dynamic nature of cyber threats.
Regular validation against multiple antivirus software interfaces
provides a solid foundation for this consistency, acting as a crucial
third-party check. This ensures that our threat assessments remain
steady and reliable across varying conditions and over time,
establishing a trusted baseline for cybersecurity defenses.

tep 3: Normalization of the severity score. After scoring each IoC, it is
mperative to normalize the results to ensure a unified and intuitive
coring system. The Severity Score quantifies the potential harm an
oC might inflict on an organization’s assets. To dynamically optimize
odel performance, we adopted a method that adjusts the weights of

ach feature based on their correlation with the target variable, the
Severity Score’. We calculated the Pearson correlation coefficient for
ach feature with the severity score, taking absolute values to account
or both positive and negative correlations. These coefficients were
hen normalized so that the sum of all feature weights equals one,
hereby ensuring that each feature’s influence on the target variable
s proportionally adjusted based on its explanatory power. The overall
everity Score (𝑆𝑆) is calculated using the weighted average of the
valuated Scores in Eq. (2) as

𝑆 = 𝑤𝐴 ⋅ 𝑆𝑆𝐴 +𝑤𝑅 ⋅ 𝑆𝑆𝑅 +𝑤𝑇 ⋅ 𝑆𝑆𝑇

+𝑤𝐶𝑃 ⋅ 𝑆𝑆𝐶𝑃 +𝑤𝐶𝑆 ⋅ 𝑆𝑆𝐶𝑆 , (2)

here weights 𝑤𝐴, 𝑤𝑅, 𝑤𝑇 , 𝑤𝐶𝑃 , and 𝑤𝐶𝑆 are assigned to each threat
ategory based on their respective importance, which are derived from
mpirical correlation analysis. This refined approach for the calculation
f 𝑆𝑆 enables a comprehensive and equitable evaluation of various
hreats, ensuring that all dimensions of threat intelligence are appropri-
tely considered in the total 𝑆𝑆. The computed feature weights were
ssigned as follows: Consistency 0.40, indicating its significant impact
n the 𝑆𝑆; Relevance 0.36, reflecting its substantial influence within
he model; Completeness 0.12; Timeliness 0.09 and Accuracy 0.03 in
his study.
7

c

Table 6
Source ranking and score distribution of CTI source.

CTI Source Connections Source rank

FireEye 120 932 100.00
Palo Alto networks 119 699 98.97
ESET 98 748 81.62
Kaspersky 82 608 68.24
Trend micro 76 456 63.15
Symantec 71 560 59.09
Cisco talos 52 854 43.59
McAfee 35 977 29.61
Microsoft 28 161 23.14
US-CERT 26 841 22.04
AlienVault 7615 6.11
Dragos 229 2.46

Step 4: Assessing confidence scores and visualizing IoCs. The confidence
score is the trustworthiness of an IoC, encompassing both the accuracy
of the CTI and the reliability of its source. To determine this score, we
employ two distinct mechanisms: Source Rank and Similarity Score.
This holistic approach integrates the authenticity of the source, the
corroboration of information between platforms, and the consensus
among detection tools. Specifically, our Source Rank method improves
the FeedRank mechanism (Meier et al., 2018), to evaluate the reliability
of information by examining the reputation of its source. This tailored
approach offers a structured methodology to systematically assess each
IoC, ensuring a thorough review of its origin, supporting evidence, and
consistency across detection tools.

The Source Rank is computed through a well-orchestrated mecha-
nism involving OpenCTI data snapshots, directed graphs based on IoCs,
and their timestamps (Eqs. (3), (4), (5)). This detailed approach yields a
refined ranking, reflective of the actual threat level. To calculate source
rank, first, we create a directed graph and add edges to the directed
graph based on IoC and timestamps in the CTI feeds. If feed1 reports
the same IoC earlier than feed2 in time, an edge is added between feed1
and feed2, which is represented by Eq. (3) as,

𝐴𝑖𝑗 =

{

1, if feed 𝑖 reports an IoC earlier than feed 𝑗

0, otherwise
(3)

here 𝐴𝑖𝑗 indicates whether there is an edge between nodes 𝑖 and 𝑗
n the directed graph. Next, we calculate the PageRank value of each
ode, which is illustrated in the Eq. (4) as,

𝑅(𝑖) = (1 − 𝑑) + 𝑑
∑

𝑗∈𝑀(𝑖)

𝑃𝑅(𝑗)
𝐿(𝑗)

, (4)

where 𝑃𝑅(𝑖) is the value of node 𝑖, and 𝑑 is a damping factor, that is
generally set to 0.85. 𝑀(𝑖) is the set of all nodes pointing to node 𝑖 and
(𝑗) is the outside degree of node 𝑗. Finally, we calculate the source

ank value of each node which is shown in Eq. (5) as,

𝑆𝑆𝑅
𝑖 =

∑

𝑗∈𝑀(𝑖)
𝑤𝑖𝑗 , (5)

here 𝐶𝑆𝑆𝑅
𝑖 is the source rank value of node 𝑖, 𝑤𝑖𝑗 is the weight of

dge (𝑖, 𝑗). We set the weight as the number of IoCs in the feed 𝑗 that are
eported later than the feed 𝑖. Finally, we sort all CTI feeds according
o their source rank values, thus obtaining the final CTI feed ranking
esults, as shown in Table 6.

The CTIs collected demonstrate that FireEye intelligence has the
ighest number of connections, indicating that utilizing intelligence
rom this provider results in the highest Source Rank score. This rank-
ng system is used to identify and prioritize high-quality intelligence
ources, reflecting the substantial use and integration of FireEye data in
ur analysis. The ability to filter and rank intelligence providers based
n their connectivity and utilization ensures that our methodology
eliably assesses the most influential and credible sources within the

ybersecurity landscape.
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Fig. 4. Score plot of the number of reports per CTI combined with the average
similarity.

For the similarity score (𝐶𝑆𝑆𝐶 ), we devised a dynamic scoring
model (Eq. (6)), which maintains an equilibrium in the confidence
score, even as the number of reports grows. As shown in Eq. (6), the
similarity score of an IoC with respect to its related reports is calculated
as

𝐶𝑆𝑆𝐶 =

(
∑𝑛

𝑖=1 SC𝑖2
)

∕(𝑛 ⋅ log2(𝑛))
3

× 100, (6)

where 𝑆𝐶 represents the similarity score of the 𝑖th report, obtained
by calculating TF–IDF vectors and cosine similarity to measure the
semantic similarity, and 𝑛 represents the total number of reports. The
proposed equation effectively calculates the score for an IoC, consid-
ering the similarity scores of associated reports and the total number
of these reports. Specifically, the sum of squared similarity scores
represents the cumulative similarity between reports. Normalization of
the score is achieved by dividing this accumulated value by the total
number of reports and subsequently taking the logarithm to base 2,
as depicted in Fig. 4. It illustrates the impact of report volume on the
calculated 𝐶𝑆𝑆𝐶 , which is shown on the 𝑦-axis, while the 𝑥-axis indi-
cates the similarity ratio. This visualization highlights the relationship
between the number of reports and the corresponding efficiency scores,
demonstrating that as the volume of reports increases, the influence of
highly similar reports on the 𝐶𝑆𝑆𝐶 gradually decreases. This graphical
representation aligns with the decreasing function introduced in the
equation to maintain a balanced and reliable calculation of scores.

This addresses the influence of the volume of reports and allows
each report to have a proportionately increased impact with the in-
crement of total reports. A decreasing function is also introduced to
mitigate the potential overemphasis of high similarity on the final
score, ensuring a balanced and reliable calculation of scores, so that,
with increasing report volume, the influence of highly similar reports
gradually decreases. The final score is then scaled by multiplying the
result by 100/3 to mitigate the skew. This factor is rooted in the
characteristic of our collected intelligence, where three sources, on av-
erage, support each IoC. We align the scoring system with the observed
average, providing an enhanced confidence measure for reports origi-
nating from multiple similar yet diverse sources while circumventing
unnecessary distortion effects caused by a high report count. Moreover,
this scaling factor is adaptable and can be adjusted to accommodate
changes in the average number of sources per IoC as our dataset grows
or evolves. The final Confidence Score is integrated with a weighting
ratio of 70% for Source Rank and 30% Similarity, providing a nuanced
insight into the threat landscape.
8

6. Implementation

This section introduces the implementation of STIX heuristic scoring
system, along with the data sources, tools, and datasets used in the
experimentation.

6.1. STIX heuristic scoring system

To construct the STIX computing back-end and visual interface for
IoC quality enhancement, our system takes advantage of OpenCTI’s
existing functions and is built upon the pycti library (OpenCTI version
5.3.17), a foundational component of OpenCTI, hence adopting its
implementation approach. The system operates in a hardware envi-
ronment featuring an 11th Gen Intel(R) Core (TM) i7-11700 @ 2.50
GHZ CPU, 48 GB of memory, an Ubuntu 20.04 x64 operating system,
and an NVIDIA RTX A5000 graphics card. The system offers two
input interfaces: Command-line mode and Web page mode, allowing
users a choice based on their needs. Subsequently, according to the
process described in the proposal, the system initiates the collection
and integration of data related to IoCs, removes extraneous attributes,
and proceeds with the scoring computation. Users can view the final
heuristic score for each scoring indicator using the Web page interface.
An enhancement to visualization functionality has been applied to the
oasis-open cti-stix visualization project, with the results shown in Fig. 5.
It presents the calculated scores for 𝑆𝑆𝐴, 𝑆𝑆𝑇 , and 𝑆𝑆𝐶𝑃 because
these indicators are directly derived from and highly dependent on the
structured data within STIX objects. In contrast, 𝑆𝑆𝑅 and 𝑆𝑆𝐶𝑆 require
additional contextual analysis that goes beyond the STIX schema, uti-
lizing external APIs for processing, and hence, are not represented in
this visual interface.

In Fig. 5, we present an example that elucidates the application of
STIX-based scores. The severity score is calculated as 61%, and the
confidence score is calculated as 37%. This example delineates the
interconnections among entities such as hash files, reports, and iden-
tifiers. The severity score, an aggregate metric, quantifies the potential
impact of a threat by integrating the assessments across five indicators:
Accuracy (0.06), Relevance (1.44), Timeliness (0.09), Completeness
(0.24), and Consistency (1.20). The relevance score is notably high
because the report covers a substantial amount of useful information.
The timeliness score is low as the IoC was identified more than a
year ago. Despite this, the Consistency score indicates that the IoC
still poses a threat. The confidence score, calculated here as 37%, is
influenced by the source rank and the similarity score. The Source Rank
is derived from using VirusTotal data, classified as Internal Enrichment
Connector, thus scoring 100%. The lower score from AlienVault is
averaged, resulting in the Source Rank score presented. However, the
confidence score is significantly reduced because the similarity score
is 0, as the IoC is supported by only one piece of intelligence. These
metrics provide a comprehensive perspective on the threat level posed
by an IoC, allowing analysts to rapidly understand the severity and
confidence of the presented intelligence.

6.2. Data sources and tools

As shown in Tables 4 and 5, we have chosen to utilize both internal
and external docker connectors as our sources of CTI data. We use
the STIX library to ensure compliance with the STIX 2.1 specification.
Moreover, as previously studied, we have incorporated the BERT-CRF
model to calculate the threat score and build the system.

It is important to highlight that the BERT-CRF model is specifically
employed for evaluating the relevance of threat intelligence. To achieve
a comprehensive and multifaceted assessment, we also integrate heuris-
tic evaluation methods, including analyses based on STIX Graph. This
composite approach enables us to delve into a thorough and multidi-
mensional analysis and assessment of threat intelligence, ensuring our
system is both precise and comprehensive.
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Fig. 5. Search for an IoC visualization result.
Table 7
A detailed breakdown of the severity score assessment criteria.

Score Timeliness Accuracy Completeness Relevance Consistency

5 Less than 1 week Corroborated by
5+ sources

Over 80% of the construction
graph completed

Recognizes 9–11 entities Over 80% antivirus detection
rate

4 Less than 1 month Corroborated by
4 sources

60%–79% of the construction
graph completed

Recognizes 7–8 entities 60%–79% antivirus detection
rate

3 Within 3 months Corroborated by
3 sources

40%–59% of the construction
graph completed

Recognizes 5–6 entities 40%–59% antivirus detection
rate

2 Within 1 year Corroborated by
2 sources

20%–39% of the construction
graph completed

Recognizes 3–4 entities 20%–39% antivirus detection
rate

1 Indefinite Corroborated by
1 source

Below 20% of the construction
graph completed

Recognizes 1–2 entities Below 20% antivirus detection
rate

0 Unavailable No corroborating
sources

No available data No recognizable entities No available data
Fig. 6. IoC type distribution.

6.3. Datasets

Our data set is stored in the local database, where we set up
OpenCTI. The number of IoCs is 357,480, the number of CTI reports is
9

Fig. 7. Proportion of similar pairs at various similarity thresholds for different
similarity methods.

34,183, and the number of observable data is 326,080. We pay special
attention to the quality of IoC. The distribution of IoC is shown in Fig. 6.
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Fig. 8. Log-scaled percentage distribution of scores across different severity score metrics.
Fig. 9. Perforations of the BERT-CRF model.

7. Results and discussion

In this section, we address two crucial questions about our system:

1. Can the system enhance the value of IoCs?
2. How does our system distinguish itself from other TIPs?

The effectiveness of our system is illustrated through its operation
and empirical evaluations using actual IoCs. By aggregating infor-
mation from various threat intelligence platforms, establishing rela-
tionships, and enriching data, our system enhances the quality and
availability of IoCs. It outperforms other existing platforms that lack
these capabilities. The subsequent subsections delve into case studies of
Emotet (Section 7.1) and Medusa (Section 7.2). The Emotet case study
indicates how our system improves the quality of IoCs by aggregating
and enriching the information effectively. In contrast, the Medusa case
10
Table 8
Computational efficiency of various similarity algorithms measured in seconds.

Similarity algorithm Time (s)

Cosine Similarity 0.01
Euclidean Distance 0.01
Manhattan Distance 0.04
Jaccard Index 117.33

study focuses on how our system differentiates itself from other TIPs.
It provides a comparative analysis that highlights the challenges of
benchmarking in the cybersecurity domain, including the proprietary
nature of algorithms and the varied dependence on intelligence data
volume across platforms. These exemplify how our system addresses
these fundamental questions.

7.1. Emotet case study

Emotet is a form of malicious software that is categorized as a key-
logger and a banking Trojan. It first surfaced in 2014 and quickly be-
came one of the most damaging malware. Emotet primarily targets the
email systems of companies and organizations, infiltrates victims’ email
accounts, pilfers contact information, and employs social engineering
techniques to disseminate malicious emails. It propagates predomi-
nantly through spam emails, enticing victims to click on malevolent
attachments or links.

To ensure that our quality enhancement measures are based on ac-
curate methods, it is essential to clarify the key technical elements sup-
porting the effectiveness of our system before delving into operational
details and specific case studies. A key aspect of our deduplication pro-
cess involves selecting an appropriate similarity measure to efficiently
identify and eliminate duplicate IoCs. In Fig. 7, we evaluated several
metrics, including Cosine Similarity, Euclidean Distance, Manhattan
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Fig. 10. Emotet hash file case study of IoC type.
Distance, and Jaccard Index, using a representative sample of 500 IoCs
extracted from 36,000 CTIs. The 𝑦-axis in this Fig. 7 represents the
proportion of document pairs that have a similarity score above a given
threshold, indicating how consistently each metric can identify similar
pairs across different thresholds. Cosine Similarity was chosen for its
computational efficiency and consistent performance in detecting con-
ceptual similarities within the preprocessed content. Manhattan sharply
declines at a threshold of 0.1, and Euclidean takes a steep drop at 0.4.
Table 8 illustrates that, unlike the Jaccard Index, which, despite its
ideal performance at lower thresholds, required a significantly longer
processing time of 117.33 s, Cosine Similarity maintained consistent
and efficient performance across varying thresholds, completing the
processing in just 0.01 s. This efficiency is crucial for maintaining the
integrity and uniqueness of IoC data in large-scale datasets.

In Fig. 8, it is shown the visual representation provided in the
log-scaled percentage distribution graph, we illustrate the proportional
distribution of severity scores across different metrics such as timeli-
ness, accuracy, completeness, relevance, and consistency. The graph
highlights how scores are distributed, emphasizing the disparities, es-
pecially in the lower range scores, which are made more discernible
through the use of a log scale due to the extreme values, such as 25,432
counts of 0 scores in Relevance. The experimental data drawn from
11
over 30,000 intelligence entries shows that the distribution of scores
in Timeliness largely depends on the age of the intelligence, with a
significant portion older than one year, which affects its immediacy
and, subsequently, its timeliness score. Most intelligence entries score
1 in accuracy as detected threat indicators inherently possess the
attributes that qualify them for this score, indicating that very few
entries completely lack relevant attributes. However, both Relevance
and Consistency do not have such constraints, resulting in a broader
distribution of scores. The results demonstrate that as scores increase,
the number of entries at each level decreases, providing evidence
that our evaluation criteria effectively quantify and differentiate the
quality of IoCs. The decreasing number of entries at higher scores
across Accuracy, Completeness, Relevance, and Consistency confirms
the robustness of our scoring system, particularly highlighting how our
criteria can discern finer details in the threat intelligence data.

Furthermore, for relevance assessment using AI models, additional
performance evaluations are required to ensure the usability of the
model. The performance of our BERT-CRF model is compared with
other advanced models which include instead of SecBERT (jackaduma,
2024) and instead of BERT-BiLSTM (Dai et al., 2019) in Table 9,
demonstrating 0.95 accuracy, 0.82 precision, 0.87 recall, and 0.84 F1-
scores. This underscores the model’s enhanced capability to accurately
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Fig. 11. Comparative analysis of confidence scores for IoCs.
Table 9
Comparison of relevance assessment models.

Model Accuracy Precision Recall F1-score

SecBERT-BiLSTM-CRF [Ours] 93.41% 77.44% 71.21% 74.20%
BERT-BiLSTM-CRF (Dai et al.,
2019)

90.72% 71.46% 52.88% 60.78%

SecBERT-CRF [Ours] 94.82% 82.16% 84.26% 83.20%
BERT-CRF [Ours] 95.10% 81.56% 86.88% 84.14%

Table 10
Threat score comparison among different threat intelligence platforms.

TIP Severity (%) Confidence (%)

A 11 50
B 10 None
C 90 90
Our 79 24

and efficiently assess the relevance of intelligence entries in various
cybersecurity contexts. The hyperparameters for training the model
were meticulously set to optimize performance: 20 epochs, an initial
learning rate of 5 × 10−5 for BERT and 8 × 10−5 for the CRF fully
connected layer, with weight decays of 1 × 10−5 for fine-tuning BERT
layers and 5 × 10−6 for the CRF fully connected layer. Fig. 9 shows
the performance of the BERT-CRF model. Epoch 3 quickly converged,
achieved a good F1-Score of 0.71, and then gradually increased to 0.84.

Fig. 11 detailed comparative analysis, using 17 IoCs related to the
Emotet malware as a sample set for average testing, was conducted
against benchmarks provided by the Cybersecurity Center of Excellence
(CCoE) program under the National Science and Technology Coun-
cil (NSTC), Taiwan. It demonstrates our system’s enhanced precision
through a 25.18% reduction in the average difference of confidence
scores. The confidence scores for each IoC were calculated using a for-
mula that integrates both the Source Rank and Similarity Score metrics.
The Source Rank assesses the reliability of the information based on the
reputation and historical accuracy of the source, while the Similarity
Score evaluates the consistency of the reported IoC with those found in
other credible reports. Specifically, the calculation involves aggregating
12
weighted scores from each contributing source. These scores are then
normalized to produce an average confidence score for the set of IoCs.

When processing through our system, we initially look for any
instances of the input IoC, which is a file hash of an Emotet sample.
The results, as depicted in Fig. 10(a), indicate a sighting reported by
AlienVault where the IoC was found to be associated with the hash of a
file. We then proceed to explore related threat intelligence. The system
identified a piece of threat intelligence named ‘‘TrickBot Group Loader
shadowdev CobaltStrike DNS Beacon’’, as illustrated in Fig. 10(b),
covers additional IoCs, URLs, DNS information, etc. However, TrickBot
is a multifunctional Trojan primarily used for financial fraud and
malevolent banking activities.

The association between Emotet and TrickBot lies in their user base
and propagation methods. Emotet has often been used as an initial
infection vector for TrickBot. The emotet is distributed to many users
through spam email attacks. Once a system is infected with Emotet, it
may download and install TrickBot, thus expanding the infection to a
wider range of targets. Currently, we filter out objects unrelated to the
IoC, such as IoCs that represent DNS. The next step involves enriching
the IoC using the Enricher module and calculating the score. As the final
generated graph, depicted in Fig. 10(c), only includes the indicator,
report, and other objects, the heuristic component only calculates the
score based on these two SDOs.

In other words, a comprehensive attack event should encompass
all STIX objects. The relevance model captures entities like HackOrg
(TrickBot) and Tool (CobaltStrike). The final scores obtained are Sever-
ity Score (61.04%) and Confidence Score (9.54%). Due to the low
credibility of the source and the support of a single threat report for
this IoC, the confidence score is low. From this experiment, we infer
that relying on a single relevant report is inadequate to determine the
high credibility of the report itself, leading to a low confidence score.

7.2. Medusa case study

Medusa is a form of malware known as ‘‘MedusaHTTP’’ or ‘‘Joker’’.
The backdoor software is intended to infiltrate victims’ computer sys-
tems and conduct various malicious activities. Medusa’s primary ob-
jective is to pilfer personal data, sensitive information, and financial
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Fig. 12. Comparison of our STIX graph and TIP C’s STIX graph: Differences in
confidence due to the absence of threat intelligence aids.

credentials. This malware typically penetrates victims’ systems through
methods such as spam emails, malicious downloads, and exploits vul-
nerabilities. Once successfully installed, it establishes a backdoor on the
victim’s system, allowing the attacker to control the infected computer
remotely. Given the input of Medusa’s C2 IPv4 address, Table 10 lists
the threat scores calculated by our system and compares them with
other publicly accessible threat intelligence platforms, such as IBM
X-Force Exchange (TIP A) (IBM, 2023), CyCraft CyberTotal (TIP B) (Cy-
craft, 2024), and AlienVault Open Threat Exchange (TIP C) (AlienVault,
2024). This comparison is challenging, as determining the exact calcu-
lation methods employed by other platforms is complex and often not
transparent.

Hence, we specifically focus on comparing the severity values close
to those of TIP C with our STIX graph to demonstrate that our system,
though designed based on STIX 2.1, has minor but notable differences
compared to TIP C’s STIX 2.0.

In Fig. 12(b), the STIX graph generated after analyzing TIP C sug-
gests that the campaign object of TIP C can be identified as an OSINT
source. Conversely, in our generated graph Fig. 12(a), the absence
of relevant OSINT is evident and contributes to a lower confidence
level. Nevertheless, the enrichment module aids in identifying regional
13
STIX objects, which results in a higher threat score. This indicates that
our system’s confidence calculation is heavily dependent on external
processing sources. Moreover, the stark contrast in the severity and
confidence scores of TIP A and B, as opposed to TIP C, suggests that
the volume and dependability of threat data are crucial factors affecting
these metrics. Our analysis is primarily aimed at comparing the severity
and confidence scores between TIP C and our system, and not an
assessment of the TIPs themselves.

8. Conclusion and future work

In this work, we introduced a system for calculating IoC threat
scores and proposed a quality assessment process. The system collected
CTI from external sources and network devices of monitored organiza-
tions to construct structured information. This system consisted of five
main components: data collection, normalization, enrichment, heuristic
scoring, and visualization. These components collected and normalized
IoCs, then enriched these IoCs, and used heuristic scoring to evaluate
IoC threat scores through a series of scores based on STIX and deep
learning to measure IoC objectively. This system used weight-heuristic
evaluation of enriched IoC based on key indicators such as accuracy,
relevance, timeliness, completeness, and consistency to provide IoC’s
severity score and confidence score.

To navigate these challenges, we adopted a case-study approach.
The Emotet case study illustrates the process of IoC enrichment and
scoring, highlighting the impact of source credibility on confidence
scores. Furthermore, the Medusa case study emphasizes our system’s
ability to transparently present indicators and perform comparisons
with other intelligence platforms. In the future, we plan to incorporate
dynamic sandbox technology to analyze the behavioral characteristics
of malicious programs, utilizing it as an internal intelligence connector
for further comparison with network threat intelligence, thereby gen-
erating more valuable intelligence. This incorporation aims to corrobo-
rate existing findings and refine the quality of intelligence, ensuring
that the IoC threat scores are as accurate and reliable as possible,
solidifying the foundation for robust cybersecurity measures.
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